Applying Search Based Probabilistic Inference Algorithms to Probabilistic Conformant Planning: Preliminary Results
نویسندگان
چکیده
Probabilistic conformant planning problems can be solved by probabilistic inference algorithms after translating their PPDDL specifications into graphical models. We present two translation schemes that convert probabilistic conformant planning problems as graphical models. The first encoding is based on the probabilistic extension of the serial encoding of PDDL in SatPlan, and the second encoding compiles a graphical model from the finite-domain representation of the SAS+ formalism. We show that a probabilistic conformant plan can be found by answering a marginal MAP inference, and the plan is optimal with respect to the length of the plan as well as the probability of achieving the goal. Since a common task of the conformant planning is to find a plan achieving the goal with a probability that exceeds a threshold, we can consider relaxing of the marginal MAP query to the pure MAP which is far easier to compute. The success probability of the suboptimal plan derived by a pure MAP solver can be re-evaluated by solving a summation problem, also a hard task. The probabilistic inference algorithms for marginal MAP that we evaluated are based on anytime AND/OR branch and bound search guided by weighted mini-bucket heuristics. Our preliminary evaluation highlights the potential and the challenges in this methodology of applying search based probabilistic inference algorithms to probabilistic conformant planning.
منابع مشابه
Applying Marginal MAP Search to Probabilistic Conformant Planning: Initial Results
In this position paper, we present our current progress in applying marginal MAP algorithms for solving the conformant planning problems. Conformant planning problem is formulated as probabilistic inference in graphical models compiled from relational PPDDL domains. The translation from PPDDL into Dynamic Bayesian Network is developed by mapping the SAT encoding of the ground PPDDL into factore...
متن کاملFast Probabilistic Planning through Weighted Model Counting
We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FF’s techniques with a powerful machinery for weighted model counting in ...
متن کاملSequential Monte Carlo in reachability heuristics for probabilistic planning
Some of the current best conformant probabilistic planners focus on finding a fixed length plan with maximal probability. While these approaches can find optimal solutions, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms bounded length search (especially when an appropriate plan length is not given a priori). The ...
متن کاملSequential Monte Carlo in Probabilistic Planning Reachability Heuristics
The current best conformant probabilistic planners encode the problem as a bounded length CSP or SAT problem. While these approaches can find optimal solutions for given plan lengths, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms CSP/SAT techniques (especially when a plan length is not given a priori). The probl...
متن کاملSequential Monte Carlo in Probabilistic Planning Reachability Heuristics
The current best conformant probabilistic planners encode the problem as a bounded length CSP or SAT problem. While these approaches can find optimal solutions for given plan lengths, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms CSP/SAT techniques (especially when a plan length is not given a priori). The probl...
متن کامل